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LETTER TO THE EDITOR

Generalised self-avoiding walk
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France and Université de Nancy I, BP 239, F-54506, Vandoeuvre les Nancy, France

Received 6 September 1983

Abstract. A generalisation of the self-avoiding walk is introduced in which k or higher
multiple points are forbidden (k =2 corresponds to the standard self-avoiding walk). The
Flory theory gives the radius of gyration exponent », =(k+1)/[(k—1)E +2] when E <
E(k)=2k/(k—1). E is the Euclidean dimension of the problem and E (k) the upper
critical dimension which is also obtained using the fractal set theory.

In the self-avoiding walk (saw) or excluded volume problem (Barber and Ninham
1970, de Gennes 1979 and references therein) one studies the statistics of a chain
without self intersection, equal weights being assigned to the allowed configurations.
On a Flory-Huggins lattice (Flory 1953) with mesh size @ and Euclidean dimension
E, the end-to-end distance for large N is

Ry =aN"’ (1)

where N is the number of steps in the walk. The critical exponent v is a function of
E for E < E_=4, the upper critical dimension above which the exclusion effect becomes
irrelevant. The chain is then Gaussian (random walk with »=1) at large scale.

This problem has been generalised in the Domb-Joyce model (see Domb 1983 for
a review) where a weighting factor 1— w is associated with the self intersections. In
the limit @ =0, a standard random walk is obtained whereas the saw problem
corresponds to w = 1.

In this letter the saw is generalised in the following way: the exclusion effect does
not take place when a given site is visited less than k times, i.e. allowed configurations
have no multiple points of order k (k-multiple points) or more. Such a walk will be
called a k-saw. When k =2 the standard saw is recovered.

Two different approaches will be used: first the Flory theory (Flory 1953) which
is known to give quite accurate values of v for the standard saw where the Flory
exponent

v=3/(E+2) (2)

is exact when E =1 or 2 (Nienhuis 1982) but slightly differs from the e =4—E
expansion result near E. (Wilson and Fisher 1972, de Gennes 1972):

v=3+&e+0(e?) (¢ expansion) v=>3+15e+0(e?) (Flory theory)

(3)
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and second the theory of fractal sets (Mandelbrot 1982). For large N values a saw
may be considered as a fractal object with fractal dimension

D=1/v (4)

so that D=2 for a random walk. Using the fractal properties of the random walk
and of its self intersections, Mandelbrot was able to show that E =4 in the saw
problem. The same methods will be used here to find out the upper critical dimension
E (k) of the k-saw,

The trial Flory free energy for a k-saw may be written

F.(R) 3R? Nk
YT “2aN " &, URETE ®)

=0

where the first term is the elastic free energy of a swollen ideal chaint and the second
gives the mean field interaction energies between k, k+1,..., k+/... monomers. In
a first step, let us ignore the interactions between more than k monomers, an approxima-
tion which will be justified below. Through a minimisation of the free energy, we get

RN EGN(k+1)/[(k_1)E+2]. (6)
The Ith term in the interaction energy reads
gy
gl = kB Tvl(Nk+l/RS\’]‘+I_1)E ) _ N[Z(k+l)~E(k+2l—1)]/[(k—1)E+2]‘ (7)
Higher-order interaction terms ¥, are comparable to &, when

2(k+1)—E(k+2I-1)=2k—-E(k—1) (8

i.e. when E =1. In higher Euclidean dimensions the interaction terms with />0 are
irrelevant and the approximation leading to (6) is justified. It follows that the fractal
dimension of a k-saw is

D.=1/v,=[(k—1)E+2]/(k+1). 9

When E =1, we get D, =1 Vk, a result which cannot be modified by higher-order
interactions. At the upper critical dimension &, (equation (7)) becomes marginal
(€,~ N°) or v, takes on the random walk value » =1 so that

E(k)=2k/(k—1). (10)

With k =2 the standard saw results are recovered.
An extensive use of the two following rules (Mandelbrot 1982) will be made.

(a) Codimension additivity. Let S; and S, be two independent fractal sets in
E-dimensional Euclidean space and let D;;,= E — D, be their codimensions; the
codimension of their intersection S, S, is

D—I=E—D1=mln[E, DI+D-2} (11)

As a consequence two sets of the same dimension D miss one another (have an
intersection of dimension zero) when E =2D. The rule may be extended to more
than two sets in an obvious way.

1 A logarithmic contribution to the elastic free energy which, at large N, is irrelevant for R, below E_ has
been omitted in (5).
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(b) Replica trick. For a random set S, with fractal dimension D, the set of its
k-multiple points has the same fractal dimension as the intersection of k replicas of
S. Applying rule (a), the set of k-multiple points has a fractal dimension

D\(k) =max[0, E — k(E — D)]. (12)

The upper critical dimension E_ of the saw follows from these two rules (Mandelbrot
1982) by looking at the self intersections of a random walk with D=2. Using (12)
one gets D;(2) =0 when E = 2D, so that a random walk is self avoiding when E = E = 4.

Let us now turn to the k-saw. Equation (12} tells us that a random walk is k self
avoiding, i.e. its set of k-multiple points is of fractal dimension D(k)=0, when

E=E/(k)=2k/(k—-1) (13)

and the Flory theory result is recovered. It may be also verified that higher-order
multiple points play no role at and above E, since E.(k+1) < E. (k).

In the following discussion, first let us mention that upper and lower bounds on
D, =1/v, below E.(k) may be deduced from the fractal theory. An upper bound is
given by the Euclidean dimension E since a fractal always has (Mandelbrot 1982)

D,<E. (14)

Assuming that rules (a) and (b) still apply for the j-multiple points (j< k) below
E_.(k)*, the fractal dimension Dy(j) of the j-multiple points for k-saw must be greater
than zero below E (k), otherwise the upper critical dimension would be E.(j) or more.
Then

Dy(j)=max[0, E—j(E~D)]>0 (15)
or

D> (j-1E/j. (16)
Taking j=k—1, below E.(k) one gets

D, >(k-2)E/(k—1). (17)

In the Flory theory, D, reaches the upper bound when E =1 and approaches the
lower bound for large k.

For large but finite k values, one may expect two regimes. When 1« N < N*(k)
where N*(k) is a cross-over value below which the k-saw restrictions play no role,
the walk is random (v =3) whereas when N> N*(k) the asymptotic behaviour is
governed by the k-multiple points exclusion and »=1/D,.

The swelling decreases (E.(k) decreases) when k increases below E=4. E=2is
an accumulation point for the E.(k) when k - co and in this limit D, =E for 1s E<?2
in the Flory theoryt.

The succession of the upper critical dimensions is the same as for multicritical
points of order k (Toulouse and Pfeuty 1975) so that one may expect a thermodynamic
analogy with this property, generalising the case k =2 (saw) which is known to be
related to the n-vector model (Stanley 1968) in the limit n =0 (de Gennes 1972) with
an ordinary critical point.

t These rules evidently do not apply for k- or higher-multiple points which are forbidden in k-SAw whereas
k replicas may have intersections of this type.

# The order of the limits on N and k is important; if the limit k - is taken first, one gets a random walk
with D=2 VE.
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