Generalised self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L643
(http://iopscience.iop.org/0305-4470/16/17/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Generalised self-avoiding walk

Loïc Turban
Laboratoire de Physique du Solide \dagger, ENSMIM, Parc de Saurupt, F-54042, Nancy Cedex, France and Université de Nancy I, BP 239, F-54506, Vandoeuvre les Nancy, France

Received 6 September 1983

Abstract

A generalisation of the self-avoiding walk is introduced in which k or higher multiple points are forbidden ($k=2$ corresponds to the standard self-avoiding walk). The Flory theory gives the radius of gyration exponent $\nu_{k}=(k+1) /[(k-1) E+2]$ when $E \leqslant$ $E_{\mathrm{c}}(k)=2 k /(k-1) . E$ is the Euclidean dimension of the problem and $E_{\mathrm{c}}(k)$ the upper critical dimension which is also obtained using the fractal set theory.

In the self-avoiding walk (SAw) or excluded volume problem (Barber and Ninham 1970, de Gennes 1979 and references therein) one studies the statistics of a chain without self intersection, equal weights being assigned to the allowed configurations. On a Flory-Huggins lattice (Flory 1953) with mesh size a and Euclidean dimension E, the end-to-end distance for large N is

$$
\begin{equation*}
R_{N} \cong a N^{\nu} \tag{1}
\end{equation*}
$$

where N is the number of steps in the walk. The critical exponent ν is a function of E for $E<E_{\mathrm{c}}=4$, the upper critical dimension above which the exclusion effect becomes irrelevant. The chain is then Gaussian (random walk with $\nu=\frac{1}{2}$) at large scale.

This problem has been generalised in the Domb-Joyce model (see Domb 1983 for a review) where a weighting factor $1-\omega$ is associated with the self intersections. In the limit $\omega=0$, a standard random walk is obtained whereas the sAw problem corresponds to $\omega=1$.

In this letter the saw is generalised in the following way: the exclusion effect does not take place when a given site is visited less than k times, i.e. allowed configurations have no multiple points of order k (k-multiple points) or more. Such a walk will be called a k-SAW. When $k=2$ the standard SAW is recovered.

Two different approaches will be used: first the Flory theory (Flory 1953) which is known to give quite accurate values of ν for the standard saw where the Flory exponent

$$
\begin{equation*}
\nu=3 /(E+2) \tag{2}
\end{equation*}
$$

is exact when $E=1$ or 2 (Nienhuis 1982) but slightly differs from the $\varepsilon=4-E$ expansion result near E_{c} (Wilson and Fisher 1972, de Gennes 1972):
$\nu=\frac{1}{2}+\frac{1}{16} \varepsilon+\mathrm{O}\left(\varepsilon^{2}\right) \quad\left(\varepsilon\right.$ expansion) $\quad \nu=\frac{1}{2}+\frac{1}{12} \varepsilon+\mathrm{O}\left(\varepsilon^{2}\right) \quad$ (Flory theory)

[^0]and second the theory of fractal sets (Mandelbrot 1982). For large N values a saw may be considered as a fractal object with fractal dimension
\[

$$
\begin{equation*}
D=1 / \nu \tag{4}
\end{equation*}
$$

\]

so that $D=2$ for a random walk. Using the fractal properties of the random walk and of its self intersections, Mandelbrot was able to show that $E_{c}=4$ in the saw problem. The same methods will be used here to find out the upper critical dimension $E_{\mathrm{c}}(k)$ of the k-sAw.

The trial Flory free energy for a k-saw may be written

$$
\begin{equation*}
\frac{F_{k}(R)}{k_{\mathrm{B}} T}=\frac{3 R^{2}}{2 a^{2} N}+\sum_{l=0} v_{l} \frac{N^{k+l}}{R^{(k+l-1) E}} \tag{5}
\end{equation*}
$$

where the first term is the elastic free energy of a swollen ideal chain \dagger and the second gives the mean field interaction energies between $k, k+1, \ldots, k+l . .$. monomers. In a first step, let us ignore the interactions between more than k monomers, an approximation which will be justified below. Through a minimisation of the free energy, we get

$$
\begin{equation*}
R_{N} \cong a N^{(k+1) /[(k-1) E+2]} \tag{6}
\end{equation*}
$$

The l th term in the interaction energy reads

$$
\begin{equation*}
\mathscr{E}_{l}=k_{\mathrm{B}} T v_{l}\left(N^{k+1} / R_{N}^{(k+l-1) E}\right) \sim N^{[2(k+l)-E(k+2 l-1)] /[(k-1) E+2]} . \tag{7}
\end{equation*}
$$

Higher-order interaction terms \mathscr{E}_{1} are comparable to \mathscr{E}_{0} when

$$
\begin{equation*}
2(k+l)-E(k+2 l-1)=2 k-E(k-1) \tag{8}
\end{equation*}
$$

i.e. when $E=1$. In higher Euclidean dimensions the interaction terms with $l>0$ are irrelevant and the approximation leading to (6) is justified. It follows that the fractal dimension of a k-SAW is

$$
\begin{equation*}
D_{k}=1 / \nu_{k}=[(k-1) E+2] /(k+1) \tag{9}
\end{equation*}
$$

When $E=1$, we get $D_{k}=1 \forall k$, a result which cannot be modified by higher-order interactions. At the upper critical dimension \mathscr{E}_{0} (equation (7)) becomes marginal ($\mathscr{E}_{0} \sim N^{0}$) or ν_{k} takes on the random walk value $\nu=\frac{1}{2}$ so that

$$
\begin{equation*}
E_{\mathrm{c}}(k)=2 k /(k-1) \tag{10}
\end{equation*}
$$

With $k=2$ the standard saw results are recovered.
An extensive use of the two following rules (Mandelbrot 1982) will be made.
(a) Codimension additivity. Let S_{1} and S_{2} be two independent fractal sets in E-dimensional Euclidean space and let $\bar{D}_{1(2)}=E-D_{1(2)}$ be their codimensions; the codimension of their intersection $S_{1} \cap S_{2}$ is

$$
\begin{equation*}
\bar{D}_{\mathrm{I}}=E-D_{\mathrm{I}}=\min \left[E, \bar{D}_{1}+\bar{D}_{2}\right] . \tag{11}
\end{equation*}
$$

As a consequence two sets of the same dimension D miss one another (have an intersection of dimension zero) when $E \geqslant 2 D$. The rule may be extended to more than two sets in an obvious way.

[^1](b) Replica trick. For a random set S, with fractal dimension D, the set of its k-multiple points has the same fractal dimension as the intersection of k replicas of S. Applying rule (a), the set of k-multiple points has a fractal dimension
\[

$$
\begin{equation*}
D_{1}(k)=\max [0, E-k(E-D)] . \tag{12}
\end{equation*}
$$

\]

The upper critical dimension E_{c} of the saw follows from these two rules (Mandelbrot 1982) by looking at the self intersections of a random walk with $D=2$. Using (12) one gets $D_{\mathrm{I}}(2)=0$ when $E \geqslant 2 D$, so that a random walk is self avoiding when $E \geqslant E_{\mathrm{c}}=4$.

Let us now turn to the k-SAw. Equation (12) tells us that a random walk is k self avoiding, i.e. its set of k-multiple points is of fractal dimension $D_{\mathrm{I}}(k)=0$, when

$$
\begin{equation*}
E \geqslant E_{\mathrm{c}}(k)=2 k /(k-1) \tag{13}
\end{equation*}
$$

and the Flory theory result is recovered. It may be also verified that higher-order multiple points play no role at and above E_{c} since $E_{\mathrm{c}}(k+1)<E_{\mathrm{c}}(k)$.

In the following discussion, first let us mention that upper and lower bounds on $D_{k}=1 / \nu_{k}$ below $E_{\mathrm{c}}(k)$ may be deduced from the fractal theory. An upper bound is given by the Euclidean dimension E since a fractal always has (Mandelbrot 1982)

$$
\begin{equation*}
D_{k} \leqslant E . \tag{14}
\end{equation*}
$$

Assuming that rules (a) and (b) still apply for the j-multiple points $(j<k)$ below $E_{c}(k) \dagger$, the fractal dimension $D_{\mathrm{I}}(j)$ of the j-multiple points for k-sAW must be greater than zero below $E_{\mathrm{c}}(k)$, otherwise the upper critical dimension would be $E_{\mathrm{c}}(j)$ or more. Then

$$
\begin{equation*}
D_{\mathrm{I}}(j)=\max \left[0, E-j\left(E-D_{k}\right)\right]>0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{k}>(j-1) E / j \tag{16}
\end{equation*}
$$

Taking $j=k-1$, below $E_{\mathrm{c}}(k)$ one gets

$$
\begin{equation*}
D_{k}>(k-2) E /(k-1) \tag{17}
\end{equation*}
$$

In the Flory theory, D_{k} reaches the upper bound when $E=1$ and approaches the lower bound for large k.

For large but finite k values, one may expect two regimes. When $1<N<N^{*}(k)$ where $N^{*}(k)$ is a cross-over value below which the k-SAW restrictions play no role, the walk is random ($\nu=\frac{1}{2}$) whereas when $N>N^{*}(k)$ the asymptotic behaviour is governed by the k-multiple points exclusion and $\nu=1 / D_{k}$.

The swelling decreases ($E_{\mathrm{c}}(k)$ decreases) when k increases below $E=4 . E=2$ is an accumulation point for the $E_{\mathrm{c}}(k)$ when $k \rightarrow \infty$ and in this limit $D_{k}=E$ for $1 \leqslant E \leqslant 2$ in the Flory theory \ddagger.

The succession of the upper critical dimensions is the same as for multicritical points of order k (Toulouse and Pfeuty 1975) so that one may expect a thermodynamic analogy with this property, generalising the case $k=2$ (SAW) which is known to be related to the n-vector model (Stanley 1968) in the limit $n=0$ (de Gennes 1972) with an ordinary critical point.

[^2]
References

Barber M N and Ninham B W 1970 Random and restricted walks (New York: Gordon and Breach) pp 60-72 Domb C 1983 J. Stat. Phys. 30 425-36
Flory P J 1953 Principles of polymer chemistry (Ithaca, NY: Cornell University Press) pp 495-540, 596-602 de Gennes P G 1972 Phys. Lett. 38A 339-40

1979 Scaling concepts in polymer physics (Ithaca, NY: Cornell University Press) pp 38-46, 272-81
Mandelbrot B B 1982 The fractal geometry of nature (San Francisco: Freeman) pp 329-30, 365
Nienhuis B 1982 Phys. Rev. Lett. 49 1062-5
Stanley H E 1968 Phys. Rev. Lett. 20 589-92
Toulouse G and Pfeuty P 1975 Introduction au groupe de renormalisation et a ses applications (Grenoble: Presses Universitaires de Grenoble) pp 55-8, 233-49
Wilson K G and Fisher M E 1972 Phys. Rev. Lett. 28 240-3

[^0]: \dagger Laboratoire associé au CNRS no 155.

[^1]: \dagger A logarithmic contribution to the elastic free energy which, at large N, is irrelevant for R_{N} below E_{c} has been omitted in (5).

[^2]: \dagger These rules evidently do not apply for k - or higher-multiple points which are forbidden in k-SAw whereas k replicas may have intersections of this type.
 \ddagger The order of the limits on N and k is important; if the limit $k \rightarrow \infty$ is taken first, one gets a random walk with $D=2 \forall E$.

