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LE'ITER TO THE EDITOR 

Generalised self-avoiding walk 
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Laboratoire de Physique du Solidet, ENSMIM, Parc de Saurupt, F-54042, Nancy Cedex, 
France and Universitt de Nancy I, BP 239, F-54506, Vandoeuvre les Nancy, France 

Received 6 September 1983 

Abstract. A generalisation of the self-avoiding walk is introduced in which k or higher 
multiple points are forbidden (k = 2 corresponds to the standard self-avoiding walk). The 
Flory theory gives the radius of gyration exponent vk = ( k  + l)/[( k - l)E + 21 when E s 
E,( k )  = 2k/( k - 1). E is the Euclidean dimension of the problem and E,( k) the upper 
critical dimension which is also obtained using the fractal set theory. 

In the self-avoiding walk (SAW) or excluded volume problem (Barber and Ninham 
1970, de Gennes 1979 and references therein) one studies the statistics of a chain 
without self intersection, equal weights being assigned to the allowed configurations. 
On a Flory-Huggins lattice (Flory 1953) with mesh size a and Euclidean dimension 
E, the end-to-end distance for large N is 

RN = aN' (1) 
where N is the number of steps in the walk. The critical exponent Y is a function of 
E for E < E, = 4, the upper critical dimension above which the exclusion effect becomes 
irrelevant. The chain is then Gaussian (random walk with Y = t )  at large scale. 

This problem has been generalised in the Domb-Joyce model (see Domb 1983 for 
a review) where a weighting factor 1 - w is associated with the self intersections. In 
the limit w = 0, a standard random walk is obtained whereas the SAW problem 
corresponds to w = 1. 

In this letter the SAW is generalised in the following way: the exclusion effect does 
not take place when a given site is visited less than k times, i.e. allowed configurations 
have no multiple points of order k (k-multiple points) or more. Such a walk will be 
called a k-SAW. When k = 2 the standard SAW is recovered. 

Two different approaches will be used: first the Flory theory (Flory 1953) which 
is known to give quite accurate values of Y for the standard SAW where the Flory 
exponent 

v = 3/(E +2) 

is exact when E = 1 or 2 (Nienhuis 1982) but slightly differs from the E =4-  E 
expansion result near E, (Wilson and Fisher 1972, de Gennes 1972): 

Y = ; + & E  +0(2) ( E  expansion) v = $+&E +0( E 2 )  (Flory theory) 
(3) 
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and second the theory of fractal sets (Mandelbrot 1982).  For large N values a SAW 
may be considered as a fractal object with fractal dimension 

D = l / v  (4) 

so that 0 = 2  for a random walk. Using the fractal properties of the random walk 
and of its self intersections, Mandelbrot was able to show that E,=4 in the SAW 

problem. The same methods will be used here to find out the upper critical dimension 
E , ( k )  of the k-SAW. 

The trial Flory free energy for a k-SAW may be written 

where the first term is the elastic free energy of a swollen ideal chain? and the second 
gives the mean field interaction energies between k,  k + 1 ,  . . . , k + I .  . . monomers. In 
a first step, let us ignore the interactions between more than k monomers, an approxima- 
tion which will be justified below. Through a minimisation of the free energy, we get 

( 6 )  R~ a ~ ( k + l ) / [ ( k - 1 ) E + 2 1  

The Ith term in the interaction energy reads 

Higher-order interaction terms are comparable to go when 

2 ( k  + I )  - E (  k +21- 1) = 2 k - E (  k -  1) (8) 

i.e. when E = 1. In higher Euclidean dimensions the interaction terms with 1 > 0 are 
irrelevant and the approximation leading to (6) is justified. It follows that the fractal 
dimension of a k-SAW is 

( 9 )  Dk = 11 V k  =[( k- 1 ) E  2 ] / (  k + 1). 

When E = 1, we get Dk = 1 Vk, a result which cannot be modified by higher-order 
interactions. At the upper critical dimension 8, (equation (7)) becomes marginal 
(go - N o )  or Y k  takes on the random walk value v = $ so that 

E,( k )  = 2 k / (  k - 1 ) .  (10) 
With k = 2 the standard SAW results are recovered. 

An extensive use of the two following rules (Mandelbrot 1982) will be made. 

(a) Codimension additiuity. Let S1 and S2 be two independent fractal sets in 
E-dimensional Euclidean space and let &) = E - D1(2) be their codimensions; the 
codimension of their intersection S, n S2 is 

DI = E - DI = min[E, L), + D,]. ( 1 1 )  
As a consequence two sets of the same dimension D miss one another (have an 
intersection of dimension zero) when E 2 2 0 .  The rule may be extended to more 
than two sets in an obvious way. 

t A logarithmic contribution to the elastic free energy which, at large N, is irrelevant for R ,  below E,  has 
been omitted in (5) .  
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(b) Replica trick. For a random set S, with fractal dimension 0, the set of its 
k-multiple points has the same fractal dimension as the intersection of k replicas of 
S. Applying rule (a), the set of k-multiple points has a fractal dimension 

Dl(k)=max[O, E - k ( E - D ) ] .  (12) 
The upper critical dimension E, of the SAW follows from these two rules (Mandelbrot 

1982) by looking at the self intersections of a random walk with D = 2. Using (12) 
one gets 0 , (2)  = 0 when E 2 2 0 ,  so that a random walk is self avoiding when E 2 E, = 4. 

Let us now turn to the k-SAW. Equation (12) tells us that a random walk is k self 
avoiding, i.e. its set of k-multiple points is of fractal dimension DI( k )  = 0, when 

E 3 E,( k)  = 2k/(  k - 1) (13) 
and the Flory theory result is recovered. It may be also verified that higher-order 
multiple points play no role at and above E, since E , (k+l )<E, (k) .  

In the following discussion, first let us mention that upper and lower bounds on 
Dk = 1/ v k  below E,( k) may be deduced from the fractal theory. An upper bound is 
given by the Euclidean dimension E since a fractal always has (Mandelbrot 1982) 

Dk E. (14) 
Assuming that rules (a) and (b) still apply for the j-multiple points ( j <  k)  below 
E,( k ) t ,  the fractal dimension DI( j )  of the j-multiple points for k-SAW must be greater 
than zero below E,( k ) ,  otherwise the upper critical dimension would be E,( j )  or more. 
Then 

01(j) =maX[O, E - j ( E  - &)] > 0 (15) 

Dk > ( j -  l)E/j. (16) 

Dk > ( k  - 2)E /  ( k - 1). 

or 

Taking j = k - 1, below E,( k) one gets 

(17) 
In the Flory theory, Dk reaches the upper bound when E = 1 and approaches the 
lower bound for large k. 

For large but finite k values, one may expect two regimes. When 1 << N < N * ( k )  
where N * ( k )  is a cross-over value below which the k-SAW restrictions play no role, 
the walk is random ( Y  =;) whereas when N >  N*( k )  the asymptotic behaviour is 
governed by the k-multiple points exclusion and v = 

The swelling decreases (E,( k )  decreases) when k increases below E = 4. E = 2 is 
an accumulation point for the E,( k )  when k + 00 and in this limit Dk = E for 1 d E zs 2 
in the Flory theory$. 

The succession of the upper critical dimensions is the same as for multicritical 
points of order k (Toulouse and Pfeuty 1975) so that one may expect a thermodynamic 
analogy with this property, generalising the case k = 2 (SAW) which is known to be 
related to the n-vector model (Stanley 1968) in the limit n = O  (de Gennes 1972) with 
an ordinary critical point. 

t These rules evidently do not apply for k- or higher-multiple points which are forbidden in k-sAw whereas 
k replicas may have intersections of this type. 
$The order of the limits on N and k is important; if the limit k -* CO is taken first, one gets a random walk 
with D = 2 VE. 
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